Equipe SYREL-G2Elab

Lainser Sklab – Bertrand Raison

Impacts of Inverter Based Resources on Protections for distribution grids

DIGITALISATION, PROTECTION ET

Classical protection plan

□ Type of protections :

- Non-directional overcurrent protection (51) PAP
- Directional overcurrent protection (67) PDP

☐ Choice and setting of these protection relays:

$I_{scTriG}:$

Maximum short-circuit current at the level of the outgoing protection in the event of a three-phase fault located immediately upstream of the outgoing protection.

I_{scbi} :

Minimum short-circuit current at the level of the outgoing protection in the event of a solid two-phase fault on the outgoing feeder in the presence of generators

I_p :

Maximum steady-state transit current at the protection level during power absorption or discharge

Classical protection plan

☐ Choice and settings of these protection relays:

If:
$$0.8 \times I_{scbi} > 1.2 \times I_{scTriG}$$

Non-directional OC

$$\max(1,3 \times I_p; \ 1,2 \times I_{scTriG}) \le I_{s51} \le 0.8 \times I_{scbi}$$

Else:
$$0.8 \times I_{scbi} \leq 1.2 \times I_{scTriG}$$

Non-directional OC:

$$1,2 \times I_{scTriG} \leq I_{s51}$$

Directional OC:

$$1.3 \times I_p \le I_{s67} \le 0.8 \times I_{scbi}$$

The Iscbi, calculated according to the IEC 60909 standard, is the same whether the GCI is present or not, as their contribution is not taken into account!

Behaviour of IBR during a fault

DIGITALISATION, PROTECTION ET STABILITÉ DES RÉSEAUX

11-12 JUIN 202

G2ELAB, GREEN-ER, 21 AV. DES MARTYRS, 38000 GRENOBLE

Requirements from Distribution System Operators

The DSO formulates some requirements to allow the connection to its grid:

- To remain connected during a short period when a fault occurs (Low Voltage Ride Through (LVRT)).
- To inject reactive current during this period to support the voltage (Dynamic Voltage Support (DVS)).

A summary of several criteria for connecting PVPGS to the power grid

Grid V.										
Country	Rated Frequency	Frequency Boundries	Maximum Allowed Time (Duration)	LVRT					HVRT	
Grid Code (GC)				Within Fault After Fault				During Voltage Swell		
Code (GC)	(Hz)	(Hz)	, i	V1 (%)	t2 (s)	V2 (%)	t3 (V(%)	t (s)	
		$f_{\rm g} > 51.5$	Disconnection (Trip)							
Germany GC	50	$47.5 < f_g < 51.5$	Stay in Operation (No Trip)	0	0.15	90	1.5	120	0.1	
		fg < 47.5	Disconnection (Trip)				┸			
Italy GC	50	ND	ND	0	0.2	85	1.5	125	0.1	
	50	$f_g > 51.5$	Disconnection (Trip)	20	0.5	80	П		0.25	
Spain		47.5 < fg < 51.5	Stay in Operation (No Trip)				1.0	130		
GC		$48 < f_g < 47.5$	3 s	20	0.5		1.0	130	0.23	
		$f_{\rm g}$ < 47.5	Disconnection (Trip)							
	50	$f_{\rm E} > 52$	2 s		0.45	80	П		0.06	
Australia		$47.5 < f_g < 52$	Stay in Operation (No Trip)	0			0.45	130		
GC		$f_{\rm g} < 47.5$	2 s							
	50	$f_{\rm g} > 50.2$	2 min	20	0.15	90			ND	
China		$49.5 < f_g < 50.2$	Stay in Operation (No Trip)				2	ND		
GC		$48 < f_g < 49.5$	10 min				2	ND		
		$f_{\rm g} < 48$	Caracteristics of PV Inverter							
	50	$f_{\rm g} > 52$	Disconnection (Trip)	0	0.15	90	1.5		Continuous	
Malaysia		47 < fg < 52	Stay in Operation (No Trip)					120		
GC		fg < 47	Disconnection (Trip)				L			
	50	$f_{\rm g} > 52$	4 s	0	0.15	85	2.0			
South Africa GC		$51 < f_g < 52$	60 s					l		
		$49 < f_g < 51$	Stay in Operation (No Trip)					120	0.15	
		$48 < f_g < 49$	60 s					120	0.13	
		$47 < f_g < 48$	10 s					П		
		fg< 47	0.2 s							
				-	0.45	05	4	+		
Enedis	50			5	0.15	85	1.5	JI		
								_		

Requirements from Distribution System Operators

Behaviour of IBR during a fault

Dynamic Voltage Support (DVS)

Country	$\Delta V_{ ext{min}1}$	Iq_{min}	$\Delta V_{ ext{min}2}$	Iq_{max}	$\Delta V_{ m max}$	k
	[pu]	[pu]	[pu]	[pu]	[pu]	
Germany	-0.1	-0.2	-0.5	-1	0.1	2
Denmark	-0.1	0	-0.5	-1	0.1	2.5
China	-0.1	0	-0.8	-	0.1	1.57
				1.05		
South	-0.1	0	-0.5	-1	0.1	2.5
Africa						

- The factor k influences the amount of reactive current that can be injected. For the countries we have studied, k ranges between 1.5 and 2.5.
- For most countries, the reactive current is saturated at 1 pu.

Bad computation of the settings

Adjustment of protections according to the calculations of IEC 60909 standard.

IBR contributes to the fault

Non-directional OC relay settings range

Blinded Protection area

Equipe SYREL-G2Elab

Mamadou Salliou Diallo - Raphael Caire - Bertrand Raison

Impacts of Inverter Based Resources on Protections for transmission grids

DIGITALISATION, PROTECTION ET STABILITÉ DES RÉSEAUX

11-12 JUIN 202

How works a distance protection (PX)

- ☐ Fault is forward the relay;
- \square Z_F belongs to one protected zone.

DIGITALISATION, PROTECTION ET STABILITÉ DES RÉSEAUX

JOURNÉES ORGANISÉES PAR G2EIA

AVEC LA PARTICIPATION DE

11-12 JUIN 2025

G2ELAB, GREEN-ER, 21 AV, DES

Simulation studies

Transformer: \square Sn = 75MVA; □ 34,5/120 kV; ☐ Couplage transfo : dY +30 \square $Z_n = X_n = 38\Omega$; HV line (PI model), L = 50km: \square $R_{1L}=0.06\Omega/km$, $X_{1L}=0.4\Omega/km$ et , $C_{1L}=9.2nF/km$; \square R_{0L} = 0,2 Ω /km , X_{0L} = 1,34 Ω /km et C_{0L} = 5,2nF/km. Grid: ☐ Scc = 15906 MVA; \square X1/R1 = 17; ☐ Un = 120 kV

Note that the wind farm is at 90% of its maximum output at the time of the fault. This is an important point, as the level of production of the wind farm has an impact on the short-circuit current supplied by it during the fault. See the study report for more details.

AG short-circuit (Rf= 0Ω) - CSC

WP park

Grid

DIGITALISATION, PROTECTION ET STABILITÉ DES RÉSEAUX 11-12 JUIN 2025 URNÉES ORGANISÉES PAR (22 LA V. DES

Test of commercial relays

Tests of 3 distance protection relays on AO3 offshore project of RTE.

Test of commercial relays

☐ Test of 3 distance protection relays on AO3 offshore project of RTE.

- □ 3 types of protection relays:
 - □ 2 scenarios considered: weak source (short-circuit current min: 19,78 kA) and strong source (short-circuit current max: 27,96 kA).
 - □ **150 various fault cases** (75 for weak source and 75 for strong source).

DIGITALISATION, PROTECTION ET STABILITÉ DES RÉSEAUX

11-12 JUIN 2025

Relay 1	
Pour la source faible (Pcc min)	26,6%
Pour la source forte (Pcc max)	16,0%

Relay 2	
Pour la source faible (Pcc min)	29,3%
Pour la source forte (Pcc max)	21,3%

Relay 3	
Pour la source faible (Pcc min)	36,0%
Pour la source forte (Pcc max)	32,0%

$$Trip\ ratio = \frac{Nb\ Trips}{Nb\ Faults}$$

Nb Faults: number of faults to which the relay should normally trip

- \square No tripping for the 3 relays : from $R_F = 1 \Omega/\text{phase}$ (phase-to-phase faults).
- \square No tripping for the 3 relays : from $R_F = 9 \Omega$ (phase to ground faults).

Thank you so much for listning