DE LA RECHERCHE À L'INDUSTRIE

Prof. TRAN Quoc-Tuan & Dr. NGUYEN Hung Cuong
CEA – Liten / INES

www.cea.fr

PLAN

I. Introduction

- 1. Context
- 2. Categories of Power System Stability

II. Methodologies

- 1. Methodology for Assessing the Impact of RES on Power System Stability
- 2. Simulation Results of Power System Performance

III. Solutions

- 1. Grid Stability under Fault Ride-Through (FRT) Conditions
- 2. Optimization of System Components
- 3. Incorporation of HVDC
- 4. Stochastic Analysis of Power System Stability

Plan

I. Introduction

- 1. Context
- 2. Categories of Power System Stability

II. Methodologies

- 1. Methodology for Assessing the Impact of RES on Power System Stability
- 2. Simulation Results of Power System Performance

III. Solutions

- 1. Grid Stability under Fault Ride-Through (FRT) Conditions
- 2. Optimization of System Components
- 3. Incorporation of HVDC
- 4. Stochastic Analysis of Power System Stability

Assessment of RES impact on grid stability

☐ How to examine the impact of RES on power system stability?

- Modelling: PV, WT, BESS, SM, grid;
- Establishing different scenarios (% Penetration of RES);
- Disturbances: a three-phase short circuit & generator outage;
- Dynamic simulation

☐ Indicators?

- Nadir frequency;
- Rate of Change of Frequency (RoCoF);
- Voltages (V_{mim}, V_{max});
- Critical Clearing Time (CCT) for Rotor angle;
- Short circuit current magnitude.

Guadeloupe grid

- Island grid (63kV, 20kV; 5.5kV);
- 12 PVs; 2 WT type 3; 2 WT type 4; 18 SMs (S_G = 582.7MVA); 12 loads (S_{load} = 253MVA).

Simulation Results of Power System Performance

☐ A three-phase short circuit

Frequency variation

Short circuit current magnitude

Voltage variation

Rotor angle variation

	RES = 0 %	RES = 10 %	RES = 20%	RES = 30%
H _{svs} (s)	4.27	4.01	3.54	2.89
RoCoF (Hz/s)	1.23	1.38	1.87	Unstable
Nadir frequency (Hz)	49.74	49.12	48.74	Unstable
CCT (s)	2.7	1.8	1.7	0.1
I _{sc_N1} (kA)	7.43	6.79	6.34	6.03

Plan

I. Introduction

- 1. Context
- 2. Categories of Power System Stability

II. Methodologies

- 1. Methodology for Assessing the Impact of RES on Power System Stability
- 2. Simulation Results of Power System Performance

III. Solutions

- 1. Grid Stability under Fault Ride-Through (FRT) Conditions
- 2. Optimization of System Components
- 3. Incorporation of HVDC
- 4. Stochastic Analysis of Power System Stability

Solutions: FRT

- ☐ Why should we apply FRT requirement? Grid Code Requirements

50.2

© Prof. TRAN Q. Tuan - All rights reserved

Solutions: FRT

Frequency variation after a three-phase short circuit

Frequency variation after generator outage

☐ FRT requirement:

↑ RES limitation from 30% to 70%.

Solutions: Optimization of System Components

■ Methodology

Linearize a power system around an operating point:

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{B} \Delta \mathbf{y}$$
$$\mathbf{y} = \mathbf{C} \Delta \mathbf{x} + \mathbf{D} \Delta \mathbf{u}$$

- The system is stable: all real part of eigenvalues of A < 0;
- Changing parameters of BESS & PSS can change the real part of the eigenvalues of A.
- ☐ Applying PSO algorithm to determine optimized parameters of system components:
- Effectiveness in Nonlinear and Multi-dimensional Problems;
- Simplicity and Ease of Implementation;
- High Convergence Speed;

Solutions: Optimization of System Components

Active power of BESS variation

Reactive power of BESS variation

- Lower installed capacity of BESS,
- Avoid oscillation and a collapse in the grid.

Solution: Incorporation of HVDC

Solution: Incorporation of HVDC

Frequency variation: Without RES

Frequency variation: With RES

Stable • Unstable

Solution: Incorporation of HVDC

Frequency variation: RES&HVDC

Power transmitted through HVDC: RES & HVDC

- RES has negative impact on stability.
- HVDC can improve stability.
- Optimized parameters of VSC-HVDC: better stability, lower capacity of VSC-HVDC system

Solution: Stochastic study

Frequency variation after a threephase short circuit

Time period	Sim order	Working SGs
0.000 1.1.000 1.1.000	27	G21; G22; G31; G32
0.00am ÷ 1.00am	63	G21; G22; G31; G32
	38	G21; G22; G31; G32
5.00am ÷ 6.00am	73	G21; G22; G31; G32
	59	G21; G22; G31; G32

Distribution of the number of instabilities in case of generator outage

Frequency variation after generator outage

Solution: Stochastic study

Time period	Sim order	Required power of BESS (MVA)
0.00am ÷ 1.00am	27	5.00
	63	5.00
5.00am ÷ 6.00am	59	5.00
	73	5.00
	38	5.00

35

Plan

I. Introduction

- 1. Context
- 2. Categories of Power System Stability

II. Methodologies

- 1. Methodology for Assessing the Impact of RES on Power System Stability
- 2. Simulation Results of Power System Performance

III. Solutions

- 1. Grid Stability under Fault Ride-Through (FRT) Conditions
- 2. Optimization of System Components
- 3. Incorporation of HVDC
- 4. Stochastic Analysis of Power System Stability

Conclusions

- ☐ Challenges of RES Integration: Reduction of system inertia, nadir frequency, short-circuit magnitude, CCT while increase RoCoF.
- ☐ FRT: Keeps RES units connected during faults, RES penetration can increase from 30% to 70%.
- ☐ BESS solution:
- Enhance stability.
- Optimising can reduce BESS oversizing while enhancing stability.
- The best solution: Optimizing all components in the power system.
- ☐ VSC-HVDC:
- Prevents fault propagation across the grid so improve stability of the grid.
- Optimizing VSC-HVDC can enhance stability and lower its installed capacity.

Perspectives

Enhancing Stability with BESS: Compare with other methods such as: intelligent control, adaptive droop control, robust droop control, VSG.
Optimization of Component Parameters Using PSO: Compare PSO algorithm with other classes of optimization methods (e.g., Model Predictive Control (MPC), Machine learning).
Optimizing the Number, Location, and Capacity of BESS and VSC-HVDC Systems.
Converter-driven and Resonance Stability.
Stability of AC-DC Hybrid Grids, DC grids.
Load shedding.

THANK YOU FOR YOUR ATTENTION

Prof. TRAN Quoc-Tuan & Dr NGUYEN Hung Cuong
CEA – INES
QuocTuan.Tran@cea.fr