

Plateforme expérimentale

Matériaux Diélectriques & Electrostatique

G2E Lab Grenoble Génie Electrique Grenoble Electrical Engineering

Liste des Principaux moyens techniques

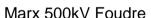
- Générateurs haute tension et cages de faraday
- Analyseurs DP I et II
- Sonde de potentiel sans contact
- Spectroscopie diélectrique I à flux d'azote
- Spectroscopie diélectrique II et III à sole chauffante (sous atmosphère d'azote ou vide)
- Mesure de courants DC et courants thermo stimulés (TSC)
- Mesure de courants DC
- Mesure de courants DC (10 20 kV)
- Spectroscopie diélectrique IV à enceinte climatique
- Spectroscopie diélectrique V à étuve
- **DMA** (visco-analyseur)
- Charge d'espace (LIPP)
- Charge d'espace (PEA)
- Dispositifs de vieillissement sous pression et température
- Dispositifs de vieillissement longues longue durées sous tension et température
- Calorimétrie par rayonnement thermique
- Cryostats optiques
- Cellule haute pression
- MEB
- Pulvérisation: sputtering, PECVD
- Divers

Générateurs haute tension et cages de faraday

Informations fournies

Tenue diélectrique et conductivité

Conditions de mesure


- o Spelmann +-360kDC
- o Spelmann 60kV DC
- o Générateur de Marx, ondes de manœuvre, onde de foudre ou onde de forme réglable.
- o 3 Transformateur élévateur 100kV => 300kVeff AC
- o 1 Transformateur élévateur 250kV / GBF
- o Nature de l'atmosphère : Air
- o 3 cages de Faraday
- o Diviseurs & sondes pour mesure haute tension:
 - o Capacitif 500 kV,
 - o sondes Tektronix 40 kV/75 MHz.
 - o North Star 100 kV/80 MHz,
 - o Transmetteurs analogiques à fibre optique 100MHz.
- o Générateurs spéciaux d'impulsion HT rapides:
 - o 20 kV / tmontée : 20ns
 - o 50 kV / T montée & descente : 20 ns
 - o 50 kV / 1kA / 100 Hz

Objets d'étude

o Isolants solides et liquides

Responsable


O. Lesaint

Transfo élévateur 300kV

Analyseurs DP I et II

Informations fournies

o Mesure des DP (TADP)

Gammes de mesure

o Cf. data sh. Power Diagnostix

Conditions de mesure

- o Gamme de tensions AC:
- o Gamme de fréquences :
- o Gamme de températures : de RT ° C à 200 ° C
- o Nature de l'atmosphère : Etuve Air

Objets d'étude

o Isolants solides et liquides

Responsable

o P. Rain / O. Lesaint

Sonde de potentiel sans contact

Informations fournies

o Mesure du déclin de potentiel

Gammes de mesure

o Cf data s. Trek 347 electrostatic voltmeter

Conditions de mesure

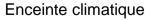
o Gamme de potentiel: 3kV

o Gamme de températures : de -50 C à 100 ° C

o Nature de l'atmosphère : Enceinte climatique

o Dépôt de charge à potentiel contrôlé par décharge couronne

Objets d'étude


Isolants solides

Responsable

o A. Sylvestre / O. Gallot-Lavallée

Vötsch

Spectroscopie diélectrique I

à flux d'azote

Informations fournies

o Mesure de la permittivité (ε_r), du facteur de pertes (tanδ) et de la conductivité (σ) des matériaux diélectriques à travers la mesure de leur impédance complexe (Z*) sous champ électrique alternatif sinusoïdal de fréquence et de valeur efficace variable

Gammes de mesure

o Impédance : $10^{-2} \Omega$ à $10^{14} \Omega$

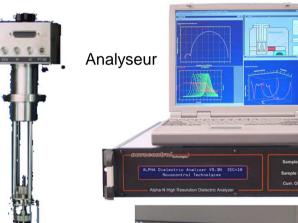
o Capacité: 10⁻¹⁵ Fà 1 F

o tan δ: 10⁻⁵ à 10⁴

Conditions de mesure

o Gamme de tensions AC : 10^{-4} V à 3 V (rms)

o Gamme de fréquences : 3.10⁻⁶ Hz à 4.10⁷ Hz


o Gamme de températures : de -180 ° C à 200 ° C

o Nature de l'atmosphère : Flux N2

Objets d'étude

o Isolants solides sous forme de disque de 4 cm de diamètre et 0,5mm d'épaisseur max

<u>Responsable</u>

Spectroscopie diélectrique II et III à sole chauffante (sous atmosphère d'azote ou vide)

Informations fournies

Mesure de la permittivité (ε_r), du facteur de pertes (tanδ) et de la conductivité (σ) des matériaux diélectriques à travers la mesure de leur impédance complexe (Z*) sous champ électrique alternatif sinusoïdal de fréquence et de valeur efficace variable

Gammes de mesure

o Impédance : $10^{-2} \Omega$ à $10^{14} \Omega$

o Capacité: 10⁻¹⁵ F à 1 F

o tan δ : 10⁻⁵ à 10⁴

Conditions de mesure

o Gamme de tensions AC : 10⁻⁴ V à 3 V (rms)

o Gamme de fréquences : 3.10⁻⁶ Hz à 4.10⁷ Hz

o Gamme de températures : de -170 ° C à 350 _{n2} 420 _{n3} et 600 _{n1} ° C (enceinte à vide)

o Nature de l'atmosphère : Vide ou N₂

Objets d'étude

o Isolants en couches minces (<100μm)

Responsable

o O. Gallot-Lavallée

Micro contact

(Enceinte à vide)

Analyseur

Mesure de courants DC et courants thermo stimulés (TSC)

Informations fournies

o Mesure du courant en fonction du temps et de l'application d'une tension continue

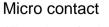
Gammes de mesure

- o Measures resistances up to
- o $10^{16}\Omega$
- 1fA–20mA current measurement
- o range
- o <20μV burden voltage on
- o lowest current ranges
- o 200TΩ input impedance
- o <3fA bias current</p>
- Up to 125 rdgs/s
- o 0.75fA p-p noise
- Built-in ±1kV voltage source

Conditions de mesure

- o Gamme de températures : de -170 °C à 350 _{n2} 420 _{n3} et 600 _{n1} °C (enceinte à vide)
- o Nature de l'atmosphère : Vide ou N₂

Objets d'étude


o Isolants en couches minces (<100μm)

Responsable

o O. Gallot-Lavallée / A. Sylvestre

Pico-ampèremètre

(Enceinte à vide)

Mesure de courants DC

Informations fournies

o Mesure du courant en fonction du temps et de l'application d'une tension continue

Gammes de mesure

- o Measures resistances up to
- o 1016Ω
- 1fA–20mA current measurement
- o range
- o <20μV burden voltage on
- o lowest current ranges
- o 200TΩ input impedance
- o <3fA bias current
- Up to 125 rdgs/s
- o 0.75fA p-p noise
- Built-in ±1kV voltage source

Conditions de mesure

- o Gamme de températures : de -180 ° C à 200 ° C (flux azote)
- o Nature de l'atmosphère : N₂

Objets d'étude

o Isolants en couches intermédiaires (<500μm)

Responsable

Mesure de courants DC (10 - 20 kV)

Informations fournies

Mesure du courant en fonction du temps et de l'application d'une tension continue

Gammes de mesure

- o Measures resistances up to $10^{16}\Omega$
- 1fA–20mA current measurement range
- o 200TΩ input impedance

Conditions de mesure

- o Gamme de températures : de -20° C à 200° C
- o Nature de l'atmosphère : Etuve HR contrôlée

Objets d'étude

Isolants solides

Responsable

o O. Gallot-Lavallée

Alim Spelmann 20kV DC

Pico-ampèremètre

Alim SRS 10kV DC

Spectroscopie diélectrique IV

à enceinte climatique

Informations fournies

Mesure de la permittivité (ε_r), du facteur de pertes (tanδ) et de la conductivité (σ) des matériaux diélectriques à travers la mesure de leur impédance complexe (Z*) sous champ électrique alternatif sinusoïdal de fréquence et de valeur efficace variable

Gammes de mesure

o Impédance : $10^{-2} \Omega$ à $10^8 \Omega$ o Capacité : 10^{-17} F à 10 F

o tan δ : 10⁻⁶ à 10

Conditions de mesure

o Gamme de tensions AC/DC : 1.10⁻⁴ V à 20 V (rms) et 1.10⁻⁴ V à 40 V (DC)

o Gamme de fréquences : 20 Hz à 1.106 Hz

o Nature de l'atmosphère : Air

o Gamme de températures : de -70 ° C à 180 ° C (enceinte climatique)

o Nature de l'atmosphère : Air HR de 10 à 80% (de 10 à 95 $^{\circ}$ C)

Objets d'étude

o Isolants liquides ou solides, composants électriques

<u>Responsable</u>

o O. Gallot-Lavallée

Analyseur 4284A

Enceinte climatique

Spectroscopie diélectrique V

à étuve

Informations fournies

o Mesure de la permittivité (ε_r), du facteur de pertes (tanδ) et de la conductivité (σ) des matériaux diélectriques à travers la mesure de leur impédance complexe (Z*) sous champ électrique alternatif sinusoïdal de fréquence et de valeur efficace variable

Gammes de mesure

o Impédance : 10^4 à 10^{11} Ω o Capacité : 10^{-12} F à 10^{-4} F

o tan δ : 10⁻³ à 10

Analyseur

Conditions de mesure

- o Gamme de tensions AC : 0 V à 140 V (rms) ou de 140 V à 21.10³ V (rms)
- o Gamme de fréquences BT : 10^{-4} Hz à 10^3 Hz (de 0 à 140V rms)
- o Gamme de fréquences HT : 10⁻⁴ Hz à 10² Hz (de 140V à 21.10³ V rms)
- o Gamme de températures : de l'ambiante à 400° C (étuve)
- o Nature de l'atmosphère : Air
- Protection : Cage de Faraday

Objets d'étude

o Isolants liquides ou solides, Machines électriques, Câbles, Composants électriques

Responsable

DMA (visco-analyseur)

Informations fournies

- Mesure des modules élastique E' et visqueux E'', et du facteur de pertes (tanδ) de matériaux polymères à travers la mesure de leur raideur complexe (K*) sous force ou déplacement imposé, à amplitude et fréquence variable.
- o Applications: mesure de température de transition α (Tg), mesure de modules, contrôle du vieillissement.

Gammes de mesure

- o Raideur maximum: quelques 10⁷ N/m
- o tan δ : sensibilité 10⁻⁴ ; résolution 10⁻⁵

Conditions de mesure

- o Force: jusqu'à 100 N
- o Gamme de fréquences: 0.001 Hz à 200 Hz
- o Température: -150° C à 450° C
- o Spectroscope Mécanique Dynamique (DMA; viscoanalyseur Métravib VA 2000)

Objets d'étude

o Selon porte-échantillon:

En flexion 3 points: Barreau à section rectangulaire (Lmax X Wmax X Tmax : 125 X 26 X 7 mm)

Responsable

o P. Rain

DMA Metravib

Charge d'espace (LIPP)

Informations fournies

- o Mesure de la distribution spatiale des charges d'espace;
- Calcul simple de la distribution du champ électrique.

Conditions de mesure

- o Mesure sous tension continue ou alternative (DC-100Hz) avec résolution selon la phase du signal.
- o Possibilité de mesures sous champ électrique appliqué ou en court circuit
- o Température variable (20-120°C); sous air

Aspects techniques

- o Possibilité de lecture des signaux bruts sans traitement du signal
- Calibration simple

Résolution

- o Résolution spatiale de l'ordre de 10μm
- Résolution verticale de l'ordre de 0.1C/m³

Objets d'étude

- o Adaptée plutôt à des polymères (propriétés acoustiques).
- o Epaisseur d'échantillon de 100μm à quelques mm selon atténuation acoustique.
- o Adaptable à différentes géométries: plaques, objets avec électrodes moulées.

<u>Responsable</u>

P. Rain / A. Sylvestre

Charge d'espace (PEA)

Informations fournies

- o Mesure de la distribution spatiale des charges d'espace;
- o Calcul simple de la distribution du champ électrique.

Conditions de mesure

- Mesure sous tension continue
- o Possibilité de mesures sous champ électrique appliqué ou en court circuit
- Sous air

Résolution

- o Résolution spatiale de l'ordre de 10μm
- Résolution verticale de l'ordre de 0.1C/m³
- Logiciel de pilotage PEANUTS

Objets d'étude

o Epaisseur d'échantillon de 50µm à 1 mm selon atténuation acoustique.

Responsable

Dispositifs de vieillissement

sous pression et température

Objectifs

Vieillissements longues durées sous pression et température de matériaux

Conditions de mesure

o Gamme de pression: 1-10 bars

o Gamme de températures : 20° C à 200° C

o Possibilité cycles thermiques.

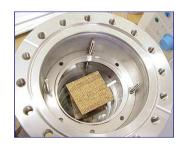
o Nature de l'atmosphère : air, O₂, N₂, ...

Aspects techniques

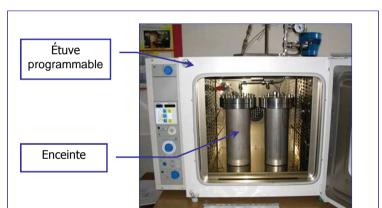
o Deux dispositifs indépendants identiques, comprenant chacun une étuve et deux enceintes sous pression.

- Volume disponible par enceinte : 2l.
- o Contrôle électronique de la pression.
- o Contrôle de la température à l'intérieur des enceintes sous pression

Enceinte UV


Responsable

P. Rain



Panier servant de porte-échantillon (échantillons dans les verres de montre)

Vue du dessus des échantillons dans l'enceinte sous pression

16

Dispositifs de vieillissement

longues longue durées sous tension et température

Objectifs

Vieillissements longues durées sous tension et température

Conditions de mesure

Gamme de tension : 10 kV (rms), 20-200 Hz
 Gamme de températures : 20° C à 200° C

Nature de l'atmosphère : air

Aspects techniques

- o Les 8 transformateurs alimentent 8 objets en parallèle.
- Un claquage sur un objet n'affecte pas le vieillissement des autres objets.
- Compteur horaire, interrupteur et détecteur de claquage sur chaque objet.

Responsable

o P. Rain

Calorimétrie par rayonnement thermique

Informations fournies

o Ce calorimètre permet de mesurer les pertes de puissance sous contraintes électriques diverses (sinus, continue, MLI, etc...).

Gammes de mesure

o Puissance: 1mW à 1W

Poids: 1kg max

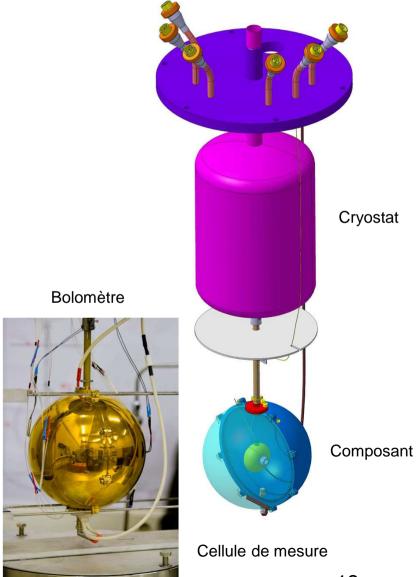
Encombrement: Φ100mm max

Conditions de mesure

o Gamme de tensions RMS: 3,5kV max

o Gamme de fréquences : 5MHz max

o Gamme de températures : de -55 ° C à 155 ° C


o Nature de l'atmosphère : Vide secondaire

Objets d'étude

o Composants, condensateurs, circuits intégrés de puissance; matériaux diélectriques, matériaux magnétiques.

Responsable

o O. Gallot-Lavallée / F. Aitken

G2E Lab Grenoble Génie Electrique Grenoble Electrical Engineering

Cryostats optiques

Objectifs

- o Etude de décharges dans l'azote et dans l'hélium.
- Mesures diélectriques à basse température

Conditions de mesure

Cryostat Hélium

- o Gamme de tension: 20 kV
- o Gamme de températures : 4 K à 77 K
- o Gamme de pression : 0,1 à 12 MPa

Cryostat Azote


- Gamme de tension : 200 kV
- o Gamme de températures : 77 K
- o Gamme de pression : 0,1 à 0,5 MPa

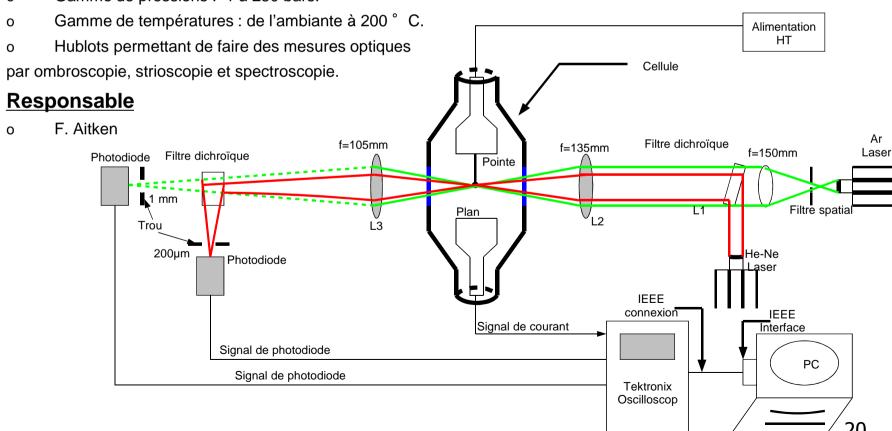
Aspects techniques

o Hublots permettant la visualisation

Responsable

o N. Bonifaci

Cellule haute pression


Informations fournies

 Cette cellule permet d'étudier les décharges couronnes dans les fluides dans des conditions variées de pression et de température.

Conditions de mesure

o Gamme de tensions : 0 à 20 kV.

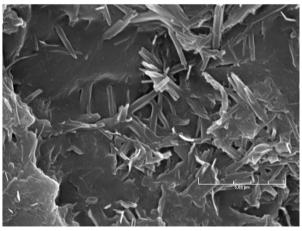
o Gamme de pressions : 1 à 250 bars.

MEB

Informations fournies

o Cartographie de surface (émission secondaire) et de composition (rétrodiffusion).

Conditions de mesure


o Gamme de tensions : 0 à 30 kV.

o Gamme de pressions : LV et Vide secondaire

o Emission filamentaire W (JEOL 5600 LV). Grossissement X 18 à 300 000

This is a high vacuum and partial vacuum (10 Pa-10⁻⁴ Pa) SEM with secondary electron detector based on the scintillator-photomultiplier design of Everhardt and Thornley. Also fitted; solid state backscattered electron detector for compositional and topographical information. SEM for use at accelerating voltages of between 300V-30 kV. Images stored digitally and/or on film.

Responsable

Câble chargé dihydroxyde de magnésium

Pulvérisation: sputtering, PECVD

Informations fournies

Dépôt de couches mince (par procédés plasma).

Conditions de mesure

- o Métalliseur Quorum techno QT150 TES.
- o Réacteur PECV
- o Réacteur PE

Responsable

o O. Gallot-Lavallée / S. Flury

PECVD

Métalliseur QT150 TES

Pulvé. cathodique

Divers

Equipements d'optique

o Spectroscopie optique ((3réseaux) 2CCD (pulsée et refroidie) 200 - 1000nm)

FTIR

- o Caméra à balayage de fente
- o Imagerie rapide, haute sensibilité
- o Photo-Multiplicateur

Simulation

- COMSOL
- Mathématica

Physico-chimie

- o Spectromètre infra-rouge à transformée de Fourier (FTIR)
- o Spectrophotomètre UV-Visible
- o Balances de précision
- o Coulomètrie Karl Fischer
- o pH-mètre
- o Conductivi-mètres à liquides
- o Rhéomètre
- o Rodeuse pour rugosité et planéité d'électrodes (<µm)
- o Enceintes climatiques

Responsable

Balance

Rodeuse