

New Adaptive Zonal Automaton

Guillaume Giraud RTE – R&D

SOMMAIRE

Context

Real world example

NAZA Technical Solution

Deployment

New cosimulation needs

Takeaways

Why do RTE need NAZA?

Illustration of a sharp increase in wind generation

Illustration of a sharp increase in wind generation

Renewable energies increase the variability and uncertainty of flows

How can we support the rapid arrival of renewable energies?

Area Centre EX-Poitou, Sud Charente et Ouest Limousin 1

Source https://www.contraintes-reseau-s3renr-rte.com/

RTE aims for an optimum cost/quality for the community

Optimal sizing

Strengthening the network

About 1/3 of RTE's investments concern the HTB1 network (less than or equal to 90kV)

Occasional curtailment of renewable energy production a few hours a year

The network needs generated by the arrival of renewable energies are concentrated on the HTB1 network (< 90 kV)

Different deadlines for deciding on limitations

Anticipate what is predictable by managing real-time uncertainty by automatons

Real world example

Example – BEAUCE area, 23rd of March 2024

Example – BEAUCE area, 23rd of March 2024

NAZA Technical Solution

NAZA – A closed loop controller

NAZA is an innovative software platform with an optimization algorithm (Model Predictive Control) to detect and process transit constraints in a specific zone

At the heart of NAZA is the Model Predictive Control algorithm

An innovative approach that introduces **predictive control** for real-time network management.

- Supervision line by line is replaced by management by zone.
- The meshed network, the changes in topology and the multiplicity of levers do not allow effective remedial actions (flowchart like) to be defined in advance: a network model and an optimization algorithm are necessary.
- To minimize margins, it is necessary to decide at the last moment, depending on the dynamics of the flows and how long it takes to activate the levers.
- Taking these deadlines into account corresponds to the framework of predictive control, with a closed-loop operation to manage errors.

Focus on real time data

Focus on the levers

Mathematical model of the decision algorithm: Model Predictive Control

The problem is described as an optimization to be is solved every 15 seconds over a horizon that corresponds to the delays of the slowest levers

NAZA Deployment

NAZA already deployed and programmed (May 2025)

Generation connected to NAZA in February 2025

Nb of NAZA zones	Nb of lines in the areas	Nb of sub- stations in the areas	Total RES generation in the areas (MW)	Total RES generation connected to NAZA (MW)
19	324	513	8 849	4 535

Energy Regulation Commission targets

2025	2026	2027	2028
10	10	15	15

From the operator point of view

IHM

New cosimulation needs

We need several cosimulation tools

From conception.... : NACRE

New Architectures for Control and Resilience of the Electrical grid

Which digital infrastructure architectures are best suited to my future control system?

...to validation

Does my control system behave correctly in the presence of disturbances?

REal-time **SYS**tem **T**esting

New Architectures for Control and Resilience of the Electrical grid

Test the behavior of my algorithm on multiple digital infrastructures during its design phase.

SR_ZC_VTV

REal-time **SYS**tem **T**esting

Validate a controller in the presence of telecom disturbances on a platform close to the real system.

- Virtual machines containing the real production software
- Real remote control application protocols
- Emulated IP
- Real-time power grid simulator

Takeaways Output Description:

Takeaways

Success story ...

- This is the **first time** a **TSO** has used an **optimization-based controller** for **real-time** management of network congestion.
- Effective industrial deployment at cruising speed.
- Good overall operational performance.

.... And a space for **improvement**

- Harden the internal state estimator regarding aberrant or missing data.
- Understand and manage the interactions between the NAZA controllers.
- Industrialize the cosimulation tools necessary for testing.
- Integrate new flexibilities.
- Prepare to implement the new operational interface with Enédis.

Thanks for your attention!

