Analysis and Decision Support of Circular Economy Strategies in Power Electronics

Doctorante: Tugce Turkbay

Directeur de la thèse: Jean-Christophe Crebier **Co-encadrante de la thèse:** Thècle Alix

19 December 2024

VIVAE Project

VIVAE is a forward-looking initiative dedicated to advancing circularity within the field of power electronics.

Objectives

- Support circularity
- Facilitate multiple life cycles
- Save residual value
- Prevent being totally recycled after first use
- Value extension

Agenda

Motivation

- Power electronics
- E-waste
- Circular economy
- Scope of the study
- Research activity

Decision Tree

- ooo Basics of the decision tree
- ooooo Conceptual level
 - ooo Case study at conceptual level
- oooooo Implementation level

Index

- Equation
 - Benchmark
- oo Results

Conclusion & Perspectives

Power Electronics

Control and convert electrical power

Power Electronics

Control and convert electrical power

70% of electricity flows through at least one power electronics converter

(ABB. Power Electronics: Revolutionizing the world's future energy systems)

Power Electronics

70% of electricity flows through at least one power electronics converter

(ABB. Power Electronics: Revolutionizing the world's future energy systems)

(Power Electronics Market Size, precedenceresearch.com)

E-waste

Generated

53 Mt in 2019

Projection for <u>2030</u>

74.7 Mt

Global E-waste Monitor 2024

Generated Projection for 2030

62 Mt in 2022

82 Mt

7.3 million metric tons

Circular Economy

Circular Economy

Take

Use

-0-0-0-0-

CIRCULAR **ECONOMY**

How to consider circular economy for power electronics

Necessary steps to initiate circular economy

Linear economy

Scope of the study

Less

preferable

More preferable

Research activity

Research Question

How can the optimal <u>circular economy strategy</u> be selected to reintroduce <u>end-of-use PE products</u> into the economy, while preserving their <u>functional value</u>?

0-0-0-0

Research Objective

Find an optimal way to determine the circular economy strategy for end-of-use PE products

Research Methodology

Identify the **different paths and actions** that should be done in order to determine the best **circular economy strategy** for **end-of-use PE products**

Why decision tree

- Breaking down process into sequential steps
- Effective way to map all steps, interrelations
- Providing a layered analysis

Agenda

Motivation

- Power electronics
- E-waste
- Circular economy
- Scope of the study
- Research activity

Decision Tree

- ooo Basics of the decision tree
- ooooo Conceptual level
 - ooo Case study at conceptual level
- oooooo Implementation level

Index

- oo Equation
 - Benchmark
- oo Results

Conclusion & Perspectives

••••••••••••••••••••

"What to do to determine the R-strategy for PE?"

Main objective

"What to do to determine the R-strategy for PE?"

smaller and manageable activities

"What to do to determine the R-strategy for PE?"

smaller and manageable activities

"What to do to determine the R-strategy for PE?"

"How to perform each activity?"

smaller and manageable activities

•••••

Agenda

Motivation

- Power electronics
- E-waste
- Circular economy
- Scope of the study
- Research activity

Decision Tree

- •••• Basics of the decision tree
- ooooo Conceptual level
 - ooo Case study at conceptual level
- occor Implementation level

Index

- oo Equation
 - Benchmark
- oo Results

Conclusion & Perspectives

Received

What to do

with these PE products

R-Strategies

Direct reuse

Repair

Refurbish

Remanufacture

Repurpose

Reuse comp.

Recycling

Agenda

Motivation

- Power electronics
- E-waste
- Circular economy
- Scope of the study
- Research activity

Decision Tree

- •••• Basics of the decision tree
- ••••• Conceptual level
 - ooo Case study at conceptual level
- oooooo Implementation level

Index

- Equation
 - Benchmark
- oo Results

Conclusion & Perspectives

Visual inspection

-Housing, cables, labels..

Power-on test

Quick check if product is operational

Safety test

- -Visual inspection
- -Electrical tests
- -Temperature test

Functional test

- -Technical specification
- -Functionalities

Agenda

Motivation

- Power electronics
- E-waste
- Circular economy
- Scope of the study
- Research activity

Decision Tree

- •••• Basics of the decision tree
- ••••• Conceptual level
 - • Case study at conceptual level
- oooooo Implementation level

Index

- Equation
 - Benchmark
- oo Results

Conclusion & Perspectives

Inputs to activity

Output from activity

Node: A-0 Title: Determining Effective Value Recovery Options

Node: A8 Title: Diagnosing of PE product No:

Node: A8 Title: Diagnosing of PE product No:

No:

Multifaced decision

Decision Criteria

- Technical feasibility
- Economic viability
- Service lifetime extention
- Eco-friendliness
- Heterogeneity indicator

Technical Feasibility

Can be measured the active effort we put on the product

Economic Viability

Comparison based on the revenue expected

Service Lifetime Extension

Comparison among the service lifetime obtained after R-strategy

Service Lifetime Extension = $f(RUL_{repair}, RUL_{refurbish}, RUL_{remanufture}, RUL_{new})$

Multifaced decision

Decision Criteria

- Technical feasibility
- Economic viability
- Service lifetime extention
- Eco-friendliness
- Heterogeneity indicator

Eco-friendliness

Seeking the solution which is more eco-friendly.

Eco-friendliness = Max
$$(E_{repair}, E_{refurbish}, E_{remanufacture}, E_{New})$$

Heterogeneity Indicator

• Heterogeneity refers to **lifespan** of the components in this criteria

Technical Feasibility = $Min (Effort_{renair}, Effort_{refurbish}, Effort_{remanufacture}, Effort_{New})$

Economic Viability = $Max(R_{Repair}, R_{Refurbish}, R_{Remanufacture}, R_{New})$

Service Lifetime Extension = $f(RUL_{repair}, RUL_{refurbish}, RUL_{remanufture}, RUL_{new})$

Eco-friendliness = $Max(E_{repair}, E_{refurbish}, E_{remanufacture}, E_{New})$

Impact of Heterogeneity Indicator

- Components with high-lifetime
- Components with moderate high-lifetime
- Components with moderate low-lifetime

Need for an index

Decision depends on different parameters

Agenda

Motivation

- Power electronics
- E-waste
- Circular economy
- Scope of the study
- Research activity

Decision Tree

- •••• Basics of the decision tree
- ••••• Conceptual level
 - • Case study at conceptual level
- •••••• Implementation level

Index

- Equation
 - Benchmark
- oo Results

Conclusion & Perspectives

Equation

$$CVI = K_{effort} \times \left(\frac{MV_{threshold}}{MV_{estimated}}\right) \times \left(1 - \frac{\beta}{100}\right) + K_{RUL} \times \frac{\gamma}{100} + K_{ecofriendly} \times \left(1 - \frac{\phi}{100}\right) + K_{heterogenity} \times \frac{\xi}{100}$$

4 main components

Indexes simplify complex data into a single variable for decision-making. While various aggregation methods exist, additive aggregation is the most common, used in 86.5% of cases as reported by Martinez Leat et al. (2020). This method involves summing normalized indicator values, often using the weighted arithmetic mean.

(J. Martínez Leal et al., Sustainability, 2020)

Equation

$$\text{CVI} = \text{K}_{\text{effort}} \times \left(\frac{\text{MV}_{\text{threshold}}}{\text{MV}_{\text{estimated}}}\right) \times \left(1 - \frac{\beta}{100}\right) + \text{K}_{\text{RUL}} \times \frac{\gamma}{100} + \text{K}_{\text{ecofriendly}} \times \left(1 - \frac{\phi}{100}\right) + \text{K}_{\text{heterogenity}} \times \frac{\xi}{100}$$

Where:

• K_{effort} : Coefficient for effort

• MV_{threshold}: Minimum acceptable market value that justifies the R-strategy economically

• MV_{estimated}: Estimated market value of the product based on current market data

• β : Effort required to implement the R-strategy in % with respect to new product

• K_{RUL} : Coefficient for remaining useful life

• γ : Obtained service lifetime after R-strategy in % with respect to new product

ullet $K_{ecofriendly}$: Coefficient for eco-friendliness

• φ : Environmental impact in % with respect to new product

• K_{heterogeneity} : Coefficient for heterogeneity

• ξ : Impact of heterogeneity indicator in % with respect to new product

Benchmark

Product Cycle	MV _{estimated}	Required effort β	Service Lifetime γ	Environ. Impact ф	Low Het. (1 st assumption)	Moderate Het. (2 nd assumption)
Remanuf.	80%	High	As-new	High	Not suitable	Suitable
Refur.	70%	Moderate	High	Moderate	Not suitable	Highly suitable
Repaired	50%	Low	RUL	Low	Suitable	Suitable
Reused	50%	Very low	RUL	Very low	Suitable	Suitable

000000

000

000000

-0-0-0-0-

0000

(A. M. King et al., Sustainable development, 2006)

0000

(Gharfalkar, M. et al. Waste Management & Research, 2016)

 $K_{effort}: 0.5$ $K_{RUL}: 0.5$ $K_{eco-friendly}: varies between 0 and 1 <math>K_{heterogeneity}: 0.5$

Benchmark

Product Cycle	MV _{estimated}	Required effort β	Service Lifetime γ	Environ. Impact ф	Low Het. (1 st assumption)	Moderate Het. (2 nd assumption)
Remanuf.	80%	High	As-new	High	Not suitable	Suitable
Refur.	70%	Moderate	High	Moderate	Not suitable	Highly suitable
Repaired	50%	Low	RUL	Low	Suitable	Suitable
Reused	50%	Very low	RUL	Very low	Suitable	Suitable

000000

000

000000

0000

Russell, J. D., & Nasr, N. Z. (2023).

 $K_{effort}: 0.5$

K_{RUL}: 0.5

0000

K_{eco-friendly}: varies between 0 and 1

K_{heterogeneity}: 0.5

Benchmark

Product	MV _{estimated}	Required	Service	Environ.	Low Het.	Moderate Het.
Cycle		effort β	Lifetime γ	Impact φ	(1st assumption)	(2 nd assumption)
New	100%	Very high	New	Very high	Highly suitable	Less suitable
Remanuf.	80%	High	As-new	High	Not suitable	Suitable
Refur.	70%	Moderate	High	Moderate	Not suitable	Highly suitable
Repaired	50%	Low	RUL	Low	Suitable	Suitable
Reused	50%	Very low	RUL	Very low	Suitable	Suitable

0000

0000

Lifetime-High

000

Lifetime-Moderate

Lifetime-Low

: varies between 0 and 1 $K_{effort}: 0.5$ $K_{RUL}: 0.5$

Plotting the index

0-0-0

Interpreting the index results

0000

0000

000000

0-0-0

Interpreting the index results

 $K_{effort}: 0.5$

 $K_{RUL}: 0.5$

 $K_{eco-friendly}$: 0.3

0000

000000

0-0-0-

K_{heterogeneity}: 0.5

Results

 $K_{effort}: 0.5$

 $K_{RUL}: 0.5$

K_{eco-friend}

: varies between 0 and 1

K_{heterogeneity}: 0.5

Agenda

Motivation

- Power electronics
- E-waste
- Circular economy
- Scope of the study
- Research activity

Decision Tree

- •••• Basics of the decision tree
- ••••• Conceptual level
 - • Case study at conceptual level
- •••••• Implementation level

Index

- Equation
 - Benchmark
- Results

Conclusion & Perspectives

Conclusion

1

Addressed gaps in CE and PE by elaborating on technical, economic, and environmental factors

2

Provided a foundation for implementing the transition to CE in EoU PE

- 3
- 1. Short term: Decision tree rationalizes experience for CE applied to **EoU PEs**
- 2. Medium term: Thanks to it, we can tailor the design of **New PEs** for CE-strategies
- 4

CVI encodes such experience and can evolve upon it to drive the design of New and Circular PEs

Need data access for decision-making and strategies for future ecosystem developments

Perspectives

-0-0-0-

0.0

Thank You For Your Attention

Jury Members

Reviewer Paul Etienne VIDAL - Professeur des Universités, Toulouse INP

Reviewer Emmanuel CAILLAUD - Professeur des Universités, CNAM

Examiner Cyril BUTTAY - Directeur de Recherche, CNRS

Examiner Carole CHARBUILLET - Maîtresse de Conférences, Institut Arts et Métiers

Thesis Director Jean-Christophe CREBIER - Directeur de Recherche, CNRS

Co-encadrante Thècle ALIX - Maîtresse de Conférences, ENSAM

Invited Julien MELOT - Ingénieur, Eaton Industries France

