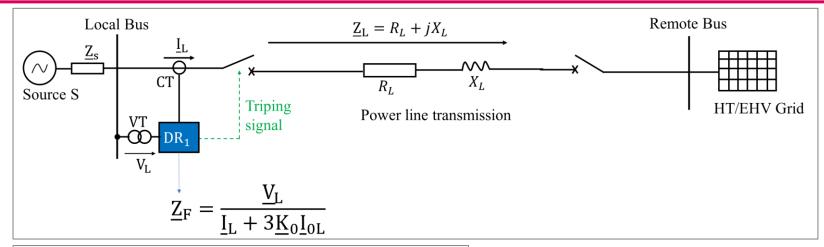
SYREL Team

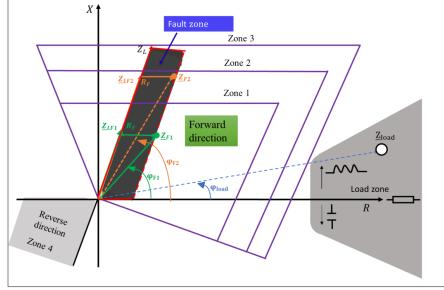
11-06-2025

Impacts of Inverter-Based Resources (IBRs) on Distance Protection

PhD Student: Mamadou Saliou DIAL O
Supervisors from Lab side: Raphaël CAIRE and Bertrand RAISON
Supervisors from RTE side: Christophe GHAFARI and Christian GUIBOUT

Presentation Plan




- I. General Principle of Distance Protection
- II. Distance Protection Behavior during faults
- III. Test results of Distance Relays (DRs) with IBRs
- IV. Causes of DRs mis-operations with IBRs

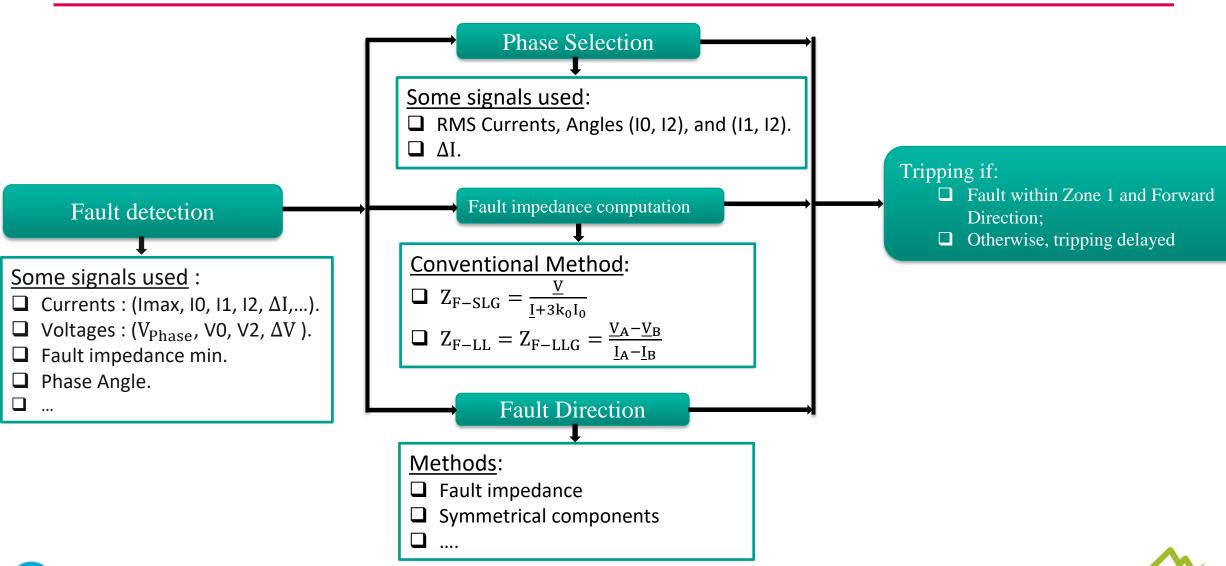
I. General Principles of Distance Protection

During normal operation:

$$\underline{Z}_{DR} = \underline{Z}_{1L} + \underline{Z}_{Load}$$

During Faults:

$$\underline{Z}_{DR} = \underline{Z}_{F} = x * \underline{Z}_{1L}$$


Where:

- \square \underline{Z}_{1L} : Positive sequence of the line impedance
- \square x: Fault distance.

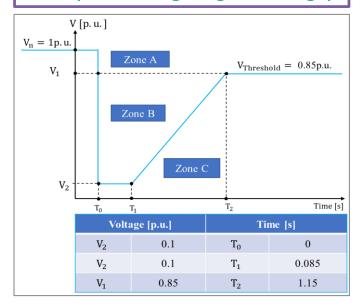
I. General Principle of Distance Protection

II. Distance Relays Behavior in Response to Electrical Faults

1. Behavior of Synchronous Generator (SG) during faults

- \square The short-circuit current (Isc) of a SG depends on its design and fault conditions (R_F , type of fault).
- ❖ Isc of a SG can exceed 10 p.u.
- The negative-sequence current can be higher than 1.5p.u.
- Synchronous generators have very high inertia

II. Distance Relays Behavior in Response to Electrical Faults

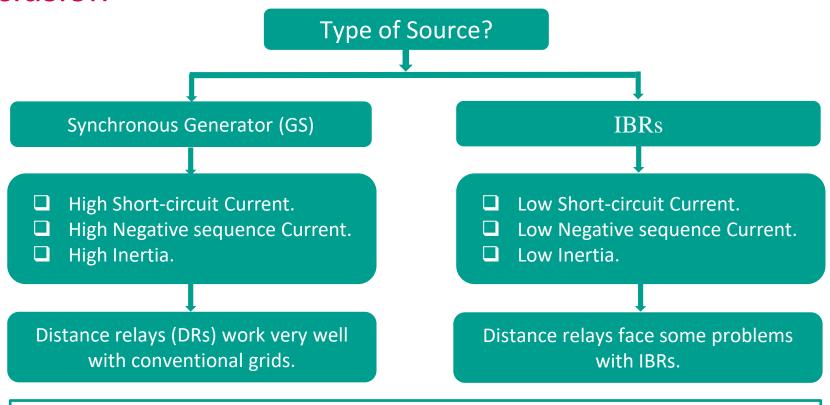

1. Behavior of Synchronous Generator (SG) during faults

- \square The short-circuit current (Isc) of a SG depends on its design and fault conditions (R_F , type of fault).
- ❖ Isc of a SG can exceed 10 p.u.
- ❖ The negative-sequence current can be higher than 1.5p.u.
- Synchronous generators have very high inertia

2. Behavior of IBRs (Inverter Based-Ressources) during faults

☐ The behavior of IBRs during faults depends on the Grid Code of TSO (Transmission System Operator).

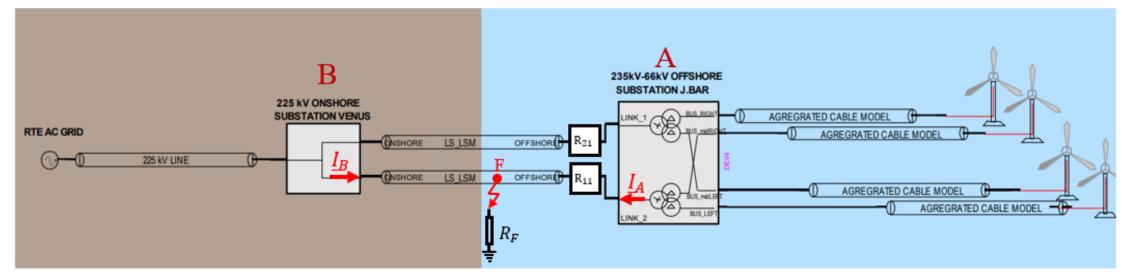
LVRT(Low Voltage Right Through)


Grid code:

- $I_{q1} = k_1 \Delta V_1 = k_1 (1 V_1) \rightarrow$ for the dynamic voltage support(DVS).
- $I_{q2} = k_1 \Delta V_2 = k_2 V_2 \rightarrow$ to reduce the unbalance of the network.
- $I_d = min\left(\frac{P_{ref}}{V_d}, \sqrt{Imax^2 I_q^2}\right) \rightarrow Does not mention in Grid Codes!$
- **❖** $2 \le k_1 \le 6$ and $2 \le k_2 \le 6$
- ❖ Imax \leq 1.2p.u.
- \bullet $I_q = |I_{q1}| + |I_{q2}| \le 1p. u.$
- ❖ To confirm the impacts of IBRs on DRs, three DRs (A, B, and C) were tested

II. Distance Relays Behavior in Response to Electrical Faults

3. Conclusion


- ❖ To confirm the misoperations of distance relays with IBRs, we tested the impacts of IBRs on DRs.
- ❖ The DRs used for these tests : A, B, and C.

1. Study context

 \square Three different DRs tested based on the RTE's AO3 Project: Capacity (600MW) in Dunkerque.

- \square Two scenarios were considered: a **Weak Grid** (Isc min: 19,78 kA) and a Strong Grid (Isc max: 27,96 kA).
- 150 fault cases (75 for weak grid and 75 for strong grid).
- **□** <u>Note</u> :
 - o Pilot schemes are not considered in this study.
 - The neutral of the transformer is directly grounded.

1. Study context

Tested faults:

- The 75 faults include:
 - 32 SLG faults;
 - 23 LL faults;
 - 20 LL faults.
- ☐ Fault location: 6%, 70%, and 100% of line length.

Cable impedances:

Cables (Cable 1 and 2) parameters					
X1[Ω]	Χ0[Ω]	R1[Ω]	R0[Ω]	C1 [μF]	CO [μF]
2.435	17.054	0.732	12.153	485.88	485.6

Fault resistance values:

- \Leftrightarrow SLG faults (R_F) ;
- ❖ Multiphase (R_{Ph}).

R	F [Ω]	RF	Ph [Ω]
	0	LL	0
	1		1
	2		2
	3		3
	4		4
	5		5
SLG	6		10
	7		20
	8	LLL	0
	9		1
	10		2
	30		3
	50		4
	100		5
			10
			20

2. General Test results

Relay A: Weak Grid			
Tripping Rate (TripR)	26.7%		
Fault detection	37.3%		
Phase selection	12.0%		
Fault direction (Forward direction)	30.7%		
Fault location	26.7%		

Relay A: Strong Grid			
Tripping Rate (TripR)	16.0%		
Fault detection	29.3%		
Phase selection	8.0%		
Fault direction (Forward direction)	18.7%		
Fault location	13.3%		

 Tr = -	Tripping Numbers
11 —	Faults Nb

Tr: Tripping rate

❖ Weak Grid: 19,78kA

Strong Grid: 27,96 kA

2. General Test results

Relay B: Weak Grid			
Tripping Rate (TripR)	29.3%		
Fault detection	38.7%		
Phase selection	38.7%		
Fault direction (Forward direction)	40.0%		
Fault location	26.7%		

Relay B: Strong Grid			
Tripping Rate (TripR)	21.3%		
Fault detection	26.7%		
Phase selection	26.7%		
Fault direction (Forward direction)	25.3%		
Fault location	18.7%		

$Tr = \frac{1}{2}$	Tripping Numbers
11 —	Faults Nb

Tr: Tripping rate

❖ Weak Grid: 19,78kA

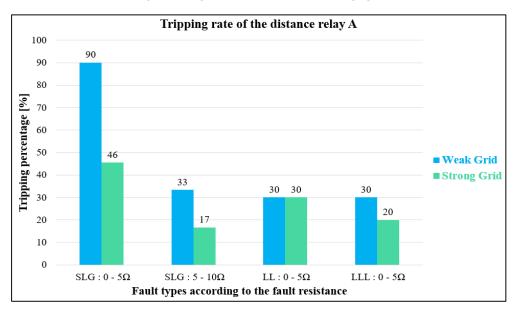
Strong Grid: 27,96 kA

2. General Test results

Relay C: Weak Grid			
Tripping Rate (TripR)	36.0%		
Fault detection	41.3%		
Phase selection	30.7%		
Fault direction (Forward direction)	34.7%		
Fault location	24.0%		

Tr =	Tripping Numbers
11 —	Faults Nb

Tr: Tripping rate

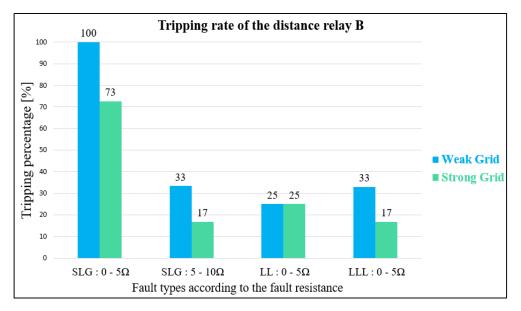

Relay C: Strong Grid			
Tripping Rate (TripR)	32.0%		
Fault detection	41.3%		
Phase selection	30.7%		
Fault direction (Forward direction)	28.0%		
Fault location	28.0%		

❖ Weak Grid: 19,78kA

Strong Grid: 27,96 kA

3. Results of distance relay A per fault type

- Weak grid:
 - \square SLG faults: No tripping from R_F = 6Ω;
 - \square LL and LLL : No tripping from R_{Ph} = 1Ω/phase.
- **Strong grid:**
 - SLG faults: No tripping from $R_F = 3\Omega$;
 - \clubsuit LL and LLL : No tripping from $R_{Ph} = 1\Omega/phase$.

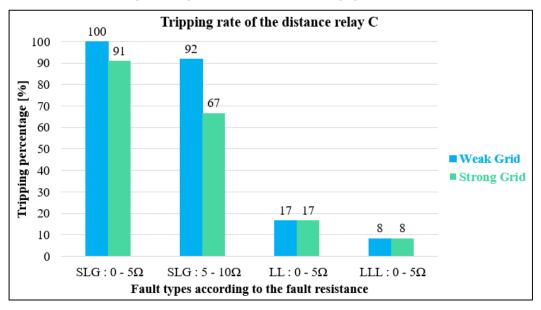

 $Tr = \frac{Tripping Numbers}{Faults Nb}$

Tr: Tripping rate

- ❖ Weak Grid: 19,78kA
- Strong Grid: 27,96 kA

3. Results of distance relay B per fault type

- Weak grid:
 - SLG faults: No tripping from $R_F = 6\Omega$;
 - LL and LLL: No tripping from $R_{Ph} = 1\Omega/phase$.
- Strong grid:
 - ightharpoonup SLG faults: No tripping from $R_F = 3\Omega$;
 - LL and LLL : No tripping from $R_{Ph} = 1\Omega/phase$.


$$Tr = \frac{Tripping Numbers}{Faults Nb}$$

Tr: Tripping rate

- Weak Grid: 19,78kA
- Strong Grid: 27,96 kA

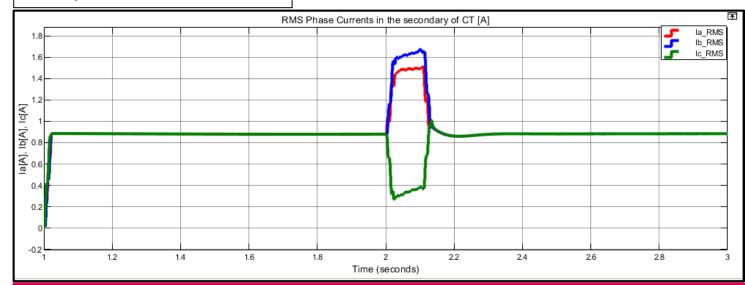
3. Results of distance relay C per fault type

$$Tr = \frac{Tripping Numbers}{Faults Nb}$$

Tr: Tripping rate

- ❖ Weak Grid: 19,78kA
- Strong Grid: 27,96 kA

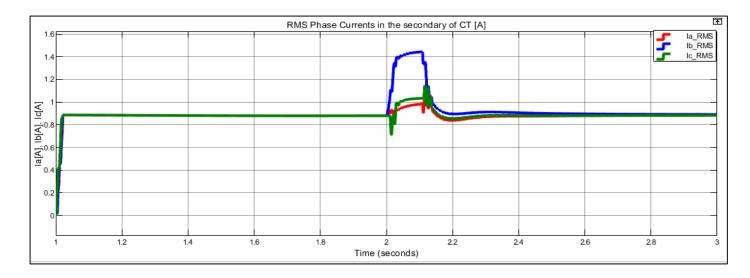
- Weak grid:
 - SLG faults: No tripping from $R_F = 10\Omega$;
 - **LL** and LLL : No tripping from $R_{Ph} = 1\Omega/\text{phase}$.
- Strong grid:
 - SLG faults: No tripping from $R_F = 9\Omega$;
 - LL and LLL : No tripping from $R_{Ph} = 1\Omega/phase$.


Causes of DRs difficulties with IBRs.

1. Distance Relays A and B

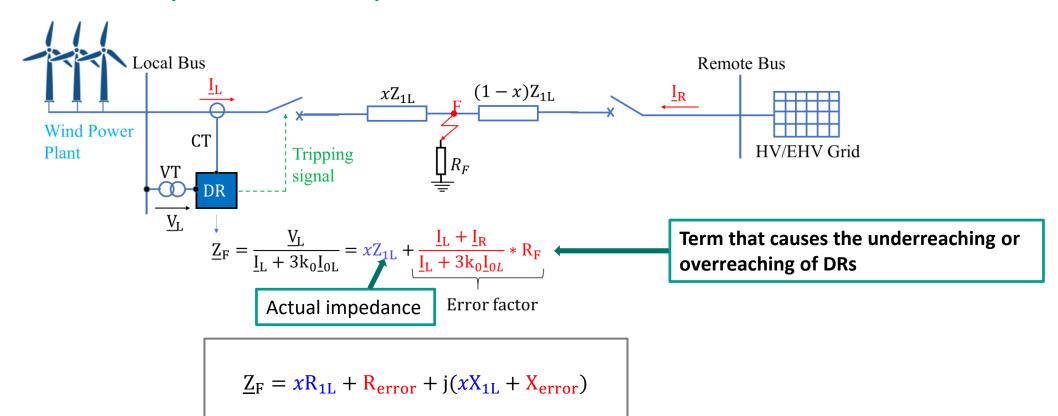
- i. Fault Detection: Currents of IBRs lower than 1.2 p.u.
- ii. Phase selection:

RMS phase currents:

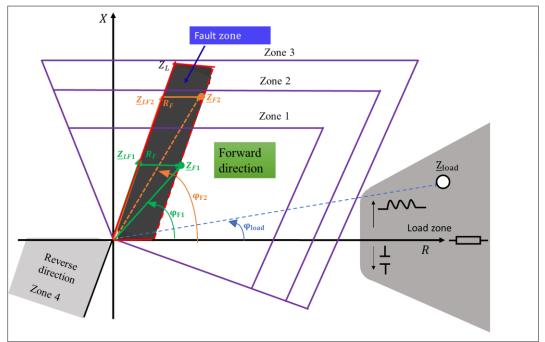

- **\Leftrightarrow** AG fault with $R_F = \mathbf{0}\Omega$.
- **❖** This could result in a three-phase trip for SLG fault.

2. Distance Relay C

- i. Fault Detection : Fault detection: up to $R_F = 100\Omega \rightarrow$ for SLG faults.
- ii. Phase selection
- Distance relay C uses phase currents for the phase selection.

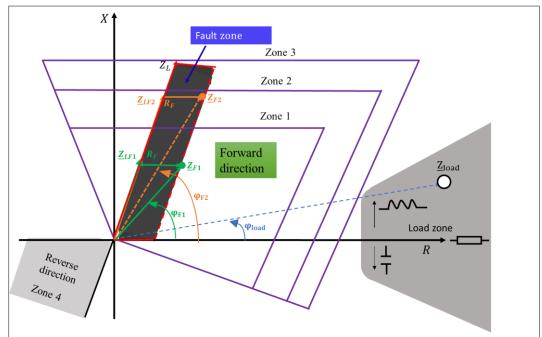

- **\Leftrightarrow** AB fault with $R_{Ph} = \mathbf{0}\Omega$.
- **This could result in only one phase trip for a LL fault.**

2. Distance Relay C


iii. Fault impedance computation

2. Distance Relay C

iii. Fault impedance computation



2. Distance Relay C

iii. Fault impedance computation

For solutions: I invite to you to my PhD defense in November 2025.

