Le jury est composé de :
M, Daniel, HISSEL Professeur université de Franche Comté
M, Damien, TROMEUR Professeur à l’Université Claude Bernard Lyon 1, examinateur
M, Gilney, DAMM Maître de conférence à l’Université d’Evry-Val-d ‘Essonne,     Examinateur
M, Mario Alberto, RIOS MESIAS Professeur à L’Universidad de los Andes, Examinateur
M, Abedkrim, BENCHAIB Enseignant\HDR à l'Institut Supergrid, Rapporteur
M, Lionel, VECHIU Enseignant\HDR à l’ESTIA, Rapporteur.
M, Seddik, BACHA Professeur à l’Université Grenoble Alpes, G2Elab, Directeur de thèse
M, Gustavo Andres, RAMOS-LOPEZ Professeur à L’Universidad de los Andes, Directeur de thèse
M, Roger, DUGAN Sr Exécutif technique, EPRI, Invité
Résumé en anglais:
This  thesis presents the Multilevel A-Diakoptics methodology (Diakoptics  based on Actors) for the dynamic load flow simulation of hybrid  distribution systems, which are power systems working at different base  frequencies. In the development of the smart grid several challenges  have been identified, such as the connection of non-conventional loads,  distributed generators, interoperability between power systems working  at different frequencies, among others. These challenges have led to use  simulations for designing and developing the future grid. Additionally,  computer hardware architectures have evolved for allowing modeling the  real world more accurately. However, the existing simulation methods for  power flow analysis are not compatible with parallel and concurrent  processing, sub-using the existing computer power. Our approach called  A-Diakoptics combines the power of Diakoptics and the Actor model to  make any conventional power flow analysis method suitable for  multithread processing. As a result, the nature and complexity of the  power system can be modeled without affecting the computing time, even  if several parts of the power system operate at very far modes or  bandwidths such as in the case of DC microgrids. This method is an  advanced strategy for simulating large distribution systems in  unbalanced conditions; covering the basic needs for the implementation  of multiscale grid dynamics.